UNCLASSIFIED

AD NUMBER

AD483281

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; Apr 1966.
Other requests shall be referred to Rome
Air Development Center, Griffiss AFB, NY.

AUTHORITY

RADC USAE 1ltr, 14 Jul 1969

THIS PAGE IS UNCLASSIFIED

483281

RADC-TR-66-37

MATHEMATICAL MODELS OF INFORMATION SYSTEMS
Richard F. Arnold

Harvey L. Garner
Richard M. Karp

Eugene L. Lawler

TECHNICAL RE?ORT NO. RADC-TR-66-37
April 1966

This document is subject to special
export controls and each transmittal
to foreign governments or foreign
nationals may be made only with
prior approval of RADC (EMLI),
GAFB, N.Y. 13440.

Rome Air Developmen. Center
Research and Technology Division
Air Force Systems Commend
Griffiss Air Force Base, New York

MATHEMATICAL MODELS OF INFORMATION SYSTEMS

Richard F. Arnold

. Harvey L. Garner
Richard M. Karp

Eugene L. Lawler

This document is subject to special
export controls and each transmittal
to foreign governments or foreign
nationals may be made only with
prior approval of RADC (EMLI),
GAFR, N.Y. 13440,

ANLS, IAF3, N.Y., 2 May €3-130

FOREWORD

This technical report was prepared by Systems Engineering Laboratory,
Department of Electrical Engineesring, The University of Michigan, Ann
Artor, Michigan under Contract AF30(602)-3546, The work was performed
under Prcject 5581, Task 558109, The RADC program monitor is Mr. Morris
A. Knapp, EMIID,

Release of subject report to the general public is prohibited by the
Strategic Trade Control Program, Mutual Defense Assistance Control List
(revised 6 January 1965), published by the Department of State.

This technical report has been reviewed and is approved.

Approved: NK J, AINT
Chief, Info Processing Branch

L~ :
/ ~ G
, ROBERT J. QUINN, JR.
Approved! Colonel, USAF
Chief, Intel and Info Processing Div

ii

ABSTRACT

This report is the first interim report of a three year study and
investigation by the University of Michigan. The primary objective of
this effort is the study and development of mathematical models of in-
formation processing systems. The general area of research includes
machine design, automata theory, and the application of mathematical
models to problems in machine design. The areas of research in this re-
port are divided into these four areas (1) Automata Theory and Applica-

tions, (2) Theory of Algorithms, (3) System Analysis, and (L) Combina-
torics and Switching Theory.

114

3., Systems AnAlYSiS « ¢« « + + 4 4 v o« 4 s w6 s e e .
3.0 Introduction « o o ¢ o 4 4 6 ¢ 4 e 4 e e e 4 e
3.1 Storage Formet Characterization for Random Access
3.2 Dynamic Allocation of Storage
3.3 Graph Model of Concurrent Computation
3.4 Classificastion of Machines and Problems . .
4, Combinatories and Switching Theory
L,O Introduction. « + o o « o+ ¢« & + o o 0 4w .
L,1 Covering Problems . + + « ¢« « « o s « = « &
L.,2 Threshold Networks: « + « + s « « « o o « o &
4,3 Cellular Logic. e h e e e e e
4.k Sequential Circuit Synthesis e e e e e s
4,5 Miscellaneous Problems. « . « « « o o« « = o o &
Bibliograrhy

Table of Contents

Autometa Theory and Applications

1.0 Introduction e s e e e e e e s
1.1 Permanent Malfunctions in Sequentiel Mechines
1.2 Temporary Malfunctions in Finite Automata .
1.3 Formal Languages .« « « « o« o o s s o o o+ o

Theory of Algorithms . « « + « o o & « « &+ o o o« &

2.0 Introduetion . . . C e h e e e e e e e
2.1 Monotone Congruence Algorithms e s e e s
2.2 Discrete Dynamic Programming « . . .
2.3 Branch-and-Bound Algorithms

A. Publications by Laboratory Personnel . .

Other References « « v o o« v v ¢ o o o o o o« «

Storage

m

N [TR

Preface

This report is a summary of the results obtained from the first
year of research under contract AF 30(602)-3546. 1In this report many
mathematical detalls and proofs have been omitted in order to obtain a
short, readsble document. Such detail can be found in the recent pub-
lications of the laboratory personnel. These publications are listed
at the end of this report and should be considered as part of the re-
search documentation.

The primary objective of this research is the development of
models of information processing systems or models of the functional
parts of information processing systems. The choice of research areas
is influenced by exiéting problems in information processing systems
and by the suitsability of these problems to &bstractlion end modeling.
The geuneral area of research includes machine design, automata theory,
and the application of mathematicsl models to problems in machine de-
sign.

The report is djivided into four parts: (1) Automata Thecry and
Applications, (2) Theory of Algorithms, (3) Systems Analysis, and (&)
Combinatorics and Switching Theory. In some cases the categorization
of a given topic in a particular area is arbitrary. In general, Auto-
mata Theory and Applications is concerned with the behavioral aspects
cf finite state machines in the abstract sense and, in particular
with relations between structure and behavior in the case of eirecuit
malfunctions. The relationship of abstract machines to programming
language is summarized and comments are made with respect to the need

for a better understanding of semantics. The Theory of Algorithms 1is

vii

concerned with the question of the existence and the derivation of optimm
algorithms. The abstract approach is taken. In Systems Analysis models
are presented for the organization of a raendom access store and for cone-
current computation. The results of a simulation study of the storage
allocation problem are presented. Preliminary thoughts on the class-
ification of machines and problems is included. Models of the control
process are being studied but this research is in the preliminary stage
and is not included in this report. Combinatorics and Switching Thieory
is concerned primarily with covering problems and recent results in the
area of threshold networks.

A comprehensive literature survey was undertaken early in the
course of this research. A detailed review of this literature is not
included in this report but mention is made to pertinent references
and other research efforts of interest to this program.

Professor Harvey L. Garner has served as the project director.
The senior research staff has consisted of Professor Richard F. Arnold,
Professor Eugene L. Lawler, and Professor Richard M. Karp. The research
staff has consisted of P. Dauber, J. DiGiuseppe, K. Garrison, R. Gonzalez,

J. Meyer, V. Powers, G. Putzolu, R. Reiter, D, Wood, and R. Zauel.

viii

I lMx e

e e e v o e s i e
R .

1. Automata Theory and Applications

1.0 Introduction

In the decade or so that automata theory has been a recognized
field of study, great strides have been made in the discovery of
theoretical results and in the explication of the interfaces with border-
ing disciplines. Among the notable achievements have been {1) a thorough
analytic treatment of finite-state systems and (2) the development of
an elegant and coherent theory of formal languages and of the automata
that cen be used to generate, manipulate, and recognize them. These
two bodies of theory seem to have particularly great potential for appli-
cation in the analysis and design of computer systems.

Our mein research effort in finite-state systems has been concerned with
error properties (aside from the question of synthesis, discussed in
section b), and two complementary points of view have been adopted.

Under one point of view a malfunction is considered to be temporary,
leaving the state transition structure of the machine unsltered. A
natural question to ask is: "What is the probability that the system
will be automatically restored to its proper state?” Under the other
point of view, & malfunction is ccnsidered to be permanent, changing

the state transition structure in some signifiecant way. Natural ques-
tions to ask are: "How is the new system related to the original? Can
the inputs be modified or coded sc that the desired pehavior is realized
in spite of the malfunction? Can the system be designed in such a way
that malfunctions in the system will prcduce only tolerable changes?"

A study of the tempcrary type of malfunctions conducted by P. Daube

is reported in Secticn 2. The initial formulation of a study of

|
o blblg

"

rermanent malfunctions being conducted by J. Meyer are presented in
Section 1.

The theory of formal langueges has contributed to a better under -
standing of the necessary properties of programming languages and to
more systematic methods of specification and of processing. Various
unsclved problems, including an inadequate treatment of semantics,
appear to limit further applications in the design and programming of

computers. These problems are reviewed, and an appraisal of the field

is made in Section 3.

ot ae

e 1A 1 o T (1 A 11T N T A Wt e o

M.

1.1 Permanent Malfunctions in Sequential Machines

The particular point of view adopted in treating the subject of mal-
functicns, failures or errors depends strongly on the class of errors being
considered, where different error classes reflect different interpretations
as t0 how and where the errors are caused. 1If the errors are regarded as
arising externally, that is, at the input to the machine, then the inter-
nal structure is not affected by error. Thus, the effects of input error
on the behavior of a particular sequential machine can be classified and
snalyzed in terms of its structure (transition function), a structure
vhich one can assume to be fixed under all possible errors. Represen-
tative of this type of error analysis are the contributions of Neumann
[b31], Winograd [b36], and most recently Harrison [bl8].

Another general class cf errors are those which are regarded as

being the result of internal malfunctions. In the case where the cause

of the error is transient or temperary in nature and results in the
machine assuming an erroneous state, the analysis of such errors is close-
iy related tc that cof the input-error interpretation. This class of
errors can again be related to a fixed, deterministic structure since,
fellowing the disturbance, the operétion is assumed to be error free.
Thus, this tyre of error can equally well be regardeld as being caused
externally by some input errcr. The questions asked differ, however,
since they relate directly to state errors rather than to thé nature cf

the inputs that might have caused them. This is the point of view adopted

by Hartmanis and Stearns [b20] and Dauber [alt] in their investigations

cf this type of state transition error.

.

Tae nature of internally caused errors has aleo been studied extensively
from a synthetic point of view;that is, in terms o. ‘imitive elements whose
interconnection realizes some sequential network. Here, the primitive ele-
ments (whieh 1:.ve been regarded as logic primitives and neurons at one
extreme and large subsystems at the other) are essumed to have a certain
probsbilistic behavior. The analysis is then concerned with questicns
that relate the probabilistic nature of the primitive elements to that of
interconnected networks of these elements. This was the point of view taken
in the classic contributions of von Neumann [b35] and Shennon end Moore [b28].

Since their papers appeared, much of the elffort devoted to the study of

reliability and redundancy in switching networks and computing systems has

. reflected this particular method of analysis [b23),

The reason for introducing this short summary regarding various
classes of errors and methods with which they have been investigated (the
summary 1s in no sense complete) is to provide a means of comparing the
class of errors we propose to investigate here with certain of those al-
ready studied. The type of errors we wish to consider here can be re-
garded as being éue to internal failures which are permanent in nature.
Unlike the class of externally caused errors or the class of internally
caused transient errors, we can no longer assume that the structure
of the machine is invariant. O{n the other hand, we would like to avoid
restricting ourselves tc a/particuler clase of switching elements as is
done in the synthetic approach. This 1is not to say that a more general
analy..s would héve no ﬁearing on synthesis problems. We feel that by
relating the effeqts of permanent failure directly t¢ structure one can
maintain a ceﬁB;{; degree of generality and yet provide synthesis procedures

that sre applicable to various classes of switching networks. We will
/

. i
|||}MAI- " m

i o e it ™ 1 iem
L A ceaciull

have more to say in this regard once we have outlined the basic framework
and objectives of our proposed research.

We are given a finite-state sequential machine
M = (Z, 4, @, A, 5)

with inputs I, outputs 4, states Q4transition function 8, and output
function A defined in the usual way. We now suppose that in some physical
system represented by M there is a permanent malfunction which permanently
alters the system but results in a configuration that still behaves as a
sequential machine. We can then represent the result of the failure as

a second machine
M' = (5, 8,Q, A, 5"

where the states Q', the transition function &', and the output function
A' of the falled machine are related in some way to the original machine
M. A more precise statement of this relationship depends, of course, on
more detailed knowledge as to how the system failed.

In relating M to M' we choose to restrict our attention here to failures
that occur in the memory portion of the physical system. This restriction
}s motivated by the fact that it is memory which distinguishes nontrivial
/sequential machines from purely combinatiocnal systems. The latter have
been investigated rather thoroughly with regard to error susceptibility
but few of the results apply when memory (with feedback) is introduced.
The restriction also has the advantage that the function of memory is
the seme from mechine to machine, that is, to store the information pre-
sented at the memory input.

In a sequentisl machine the transition function represents both

decisicn and memory processes in that we interpret $(q,0) to be the "next"

state gilven the '"present" state is q and the "present'" input is ¢.

To distinguish the functions of memory and decision we can let

Y T——- s Pty T gy i

® = §.p (the functional composition of & and p, first applying %)

vhere 8(q-0) is the memory input and represents a purely combinational

process and pu is the memory function representing the storage of

5(q.0). In case the memory operates properly, p is simply the identity

function on the set of states Q. Accordingly, if memory inputs are
stored improperly as the result of failure, p is some function other than
the identity function. To insure that the result of the failure is stable i
in the sense that the machine does not oscillate between states, we
require in addition that u be an idempotent function. We call such func-

tions failures of the machine M and for the failed machine M' we have

Q' = u(Q), B' = By and A' = A restricted to u(Q). This then is the
basic framework within which we intend to study permanent failures.

Within such a framework a number of interesting questions present
themselves in a rather natural way. In physical situations where one is
unable to or does not choose to repair the system, one is interested in
failures under which the terminal behavior is unaltered by the change in
structure. Thus we want to determine the conditions on a failure p
under which the failed machine is behaviorally equivelent to the original.
Also of practical importance are situations where internal repailr is not
feasible but one is able to recode input and output information in an
attempt to re-establish proper operation. This would occur, for example,
with alrborne or spaceborne computers that receive from and/or transmit
to, manned installations. In this case we want to know the conditions on
p under which M' can simulate M. We may slso ask questions about preserving
certain properties of the behavior that correspond in some sense to partial

success of the system.

With regard to failures themselves, we would like to determine those
relations on a set of failures that will conmnect the known properties of
some given failure with those related to it. For example, if we know
that some failure p preserves behavior in one of the sbove-mentioned ways,
what relation or relations on the set of failures will determine other
failures having the same property? Regarding the failures simply as func-
tions, how do well-known operations and relations correspond to the in-
tended interpretation? What subsets of failures correspond to various
physically motivated restrictions as to how memory elements fall? Can
these subsets be generated in some way from even sméaller sets? The last
two questions are related directly to the synthesis problem, which we
regard as an important part of the investigation. In the proposed
framework, this problem tekes the following form. According to the
assumed nature of the memory elements and how they fail in a mémory sys-
tem, one can determine, for a given size memory, the functions corres-
ponding to possible physical failures. This can be done without know-
ledge as to how the remainder of the system 1s implemented. Then given

a reduced machine which satisfies the specified behavicral requirements,

OCNE T SUBAIE TR, IR

the synthesis prcblem is translated to that of a many-to-one state assign-

ment which satisfies the desired behavioral requirement {e.g. equivalence

or simulation) on machines resulting from failures in the set under con-
sideration. As such an assignment may not always be possible; questions
as to the conditions under which algorithms exist are also important.

In the process of answering these questions we should alsc obtain a
more thorough knowledge as to general relstlonships between structure and
behavior, and should be able to relate faiiures to other aspects of machine

theory, especiamlly decomposition theory. The main objective, however, is

tc determine, as a functicn of the complexity of behavior, the complex-
ity of structure needed for a specified degree of error insensitivity.
In the case of permanent failures, such questions have not been answered
by the synthetic apprcach, whereas we feel they can be answered within

the proposed framework.

1.2 Tempcrary Malfunctions in Finite Autcmata

This problem arose from an attempt to make a general study of relia-
bility in computer-like machines. Machines of this type may, due to a
bad input tape, z temporary malfunction of a diode, or for some other
reason, enter an incorrect state. The machine may then under the influ-
ence ¢t the input tape yield incorrect outputs. However, if the input
tape takes both an incorrect state, entered due to the malfunction, and
the correct state tc the same next state, then subsequent outputs will
be correct. This will be called correcting the error.

The classic results of von Neumann b35] apply only tc networks
without feedback. Thus a malfunction only causes the network to he in
the inccrrect state for a bounded length cof time. With feedback a mal-
function can cause an error which may persist forever. Fortunately, not
all errors are of this type. Some errors are of the type that can per-
sist only for a bounded time. Some errors, although they can persist
infinitely long, have a probebility one of being corrected as the tapes
get longer. Thus "almost all" of the "long" tapes correct the error.

This phenomenon has been studied by Dauber [a5 ,a6], The results
of this research are summarized here. First the problem is formulated
in terms of the theory of automata. In the formulation which follows we

are concerned only with states and outputs are ignored. This transition

v s e

system is sufficient for this study.

Definition 1

A Tinite automaton M is a triple

M = (Q: z, 8)
where Q is a finite set with elements 9 (set of states);
£ is a finite set with elements o, (input alphebet);

5 is a function from @ >< I - q (next state function).

If we are thinking of the finite automaton as a model of a digitel
device, we can associate the states of the digital device with the state
set Q, the input symbols of the device with Z. Then the manner in
which the device changes states, when it receives an input is associated

with 5.

Definition 2
(a) An error in a finite automaton, M, is a pair of states
(quQJ) .
(v) An error (qi’qj) is corrected by a tape t ("tape" 1is
synonymous with "input sequence") if and only if

8(qy,t) = Blqy,t).

We can think of an error (qi’qj) as the situation, when due to a
previous malfunction, the autometon is in state 9 and should be in state
q or vice versa. (It 1s obvious from the definition "corrected" that
these situations are equivalent.) If, by the &bove definition, an error
is corrected, then from that time on the output must be correct. However

if an error is not corrected we mey still have more incorrect outputs.

o EL e B in B i e EESEE s o _.zaoo— o TR g,

10

In this work we will consider a random source, which generates se-
quences and drives the automaton. A random source S is a set {Pn} of

probebility distributions Pn(x), the probability of the n-length string

X. S has property P if there is a real k > O such that Pn+l(xo) >k Pn(x),

for all x and o.

Lefinition 3

Let S be a random source with property P and output symbols Z,
and let M = (Q, £, 8) be a finite automaton driven by S. For
an error
E = (qi’qj) we define the following:
(&) 7§(qi,qj) = probsbility of the set of tapes of length ¢
| which correct the error (qi,qj).
®) Plapa) = lm o5laga).
=
Now let us consider the following classification of errors in a

finite automaton M being driven by a source S as above.

Definition &
An error E = (qi,qj) is
(a) definite if and only if there is an [such that
7i(E) = 1.
(b) finite if and only if 7S(E) = 1.
(¢) correctable if and only if 7S(E) > 0.

(d) non-cerrectable if and only if 7S(E) = 0.

Intuitively, these classifications have the following meanings. If
an error is defirite then there is a fixed length, [, such that all se-

quences of length £ cr greater, correct the error. On the other hand, if

11

there is not such a fixed length, out as we consider longer and longer
sequences, a larger and larger percentage of seguences correct the er-
ror, and if in the limit c¢cne hundred percent ¢f the sequences correct
the error, then we have a finite error.

We will now give some fundamental properties of errors which will

show the connection between the goncepts of correctable and finite errors.

Theorem 1
The set c¢f finite errors in an automaeton M driven by a source
with prcperty P induces a partiticn cn the setAof states.
That is, there is a partiticn =

F
E = <qi’qj) is finite if and only if q, = qj(nF).

on the states of M so that

The next theorem will show the strong connection between errors
which are correcteble and errors which are finite. We will use the
cross product of sets which has the following meaning:

A>DB = [(ai,bj)] a €A and bJ.eB}.

Theorem 2
Let C CM > M be the relation: (qi,qj)ec if and only if
(qi’qj) is a correctable error. Then an error E = (qi’qj)
is finite if and only if (qi,qj)ec and for all tapes t,

(B(Q }t)) 6(Q-)t))€c'
i J

Since the concept of an error being correctable is not dependent upon
the source, the above theorem tells us that as long as we are dealing
with only the class of sources that have property P, the property of an
error being finite is also independent of the source. 1In the discussion

which follows the term "source" will refer to a source with preoperty P

12

unless we explicitly say otherwise. Thus we will call an error a finite
error if it is finite for some source (hence all sources) with property
P, and ve will call nF the finite error partition. Likewise we will
drop the superscript on 7 denoting the source. We will cell an error a
nontrivial error if it is not of the form (qi’qi)'

Theorem 2 provides a conceptual connection between the relation C
and the partition ﬂF' The next theorem is a stronger characterization
of this connection.

We will use the cancnical cordering on partitions. That is,

Ty 2, £y (1 =) = 9= gp(n))-

Theorem 3
%, is the coarsest partition (i.e. the largest under the
canonical ordering) with the substitution property such

that

9 = q (g) =—> (qi,qj)ec.

State behavior realization as defined by Hartmanis and Stearns [ly,b22)
is a very strong type of realization. One meaning is that if one digital
circuit is represented by an sutomaton Ml
end if Ml state behavior realizes M2 then no matter what coding of the

and another by an automaton M2

outputs we put on the second system there is a coding of outputs of the

first sc that they both do the same thing.

13

Definition 5

Let M, = (Ql, 2, b), M2 = (Qe, L', 5')end A: Q. X T I,

1
with connecting

Then the series connection of M1 with Me
function A is the automaton M = (Ql > Qs I, B") where

®" is defined as follows:

5“((‘1119.3):0) = (5(‘11:0): 5'(‘13))\(qi)c)))~

We will say that a finite automaton M can be state behavior realized

by a series connection of finite automata Ml and M2 if there is a connec-
ting function A\ such that M is state behavior realized by the series connec-
tion of Ml and M2 with connecting function A.

Again, in terms of digitel systems, this means that if Dl’ DE’ and
D3 are three digital systems iepresented by finite automata Ml’ M2,

M3 and Ml is state behavior realized by a series connection of M2 and

M3, then instead of building Dl’ we can build D2 and D3 and connect

and

them as follows:
|

In this case A\ corresponds to the coding of the outputs of D2.
The following theorem is a consequence of Theorem 3 and 2 well-known

result of Hartmanils.

Theorem 4 .
If M is a finite sutomaton with a finite partition KF’ then
M can be state behavior realized by a series cornection of

two automate Ml and M2, where all errors in M, are finite,

2

and Ml has no ncntrivial finite errors.

The following example demonstrates these theorems.

14

-

Example 1
Let M = ({a,b,c,d,e}, (0,1}, &) where & is the mapping shown below.

It is easy to show thsat
¢ = {(a,d),(a,a),(p,c),(c,b),(e,a),(a,e),(e,d),(d,e),(v,e),(e,b),
(cye),(e;sc),(8y0), (0,0}, (c,c),(a,d),(e,e)).
There are four equivalénce relations with the substitution property

contained in C.

| 5 = (8,5,5,,8)
t, = (a,d, ©, c, e}
L {a, b,c, 4, e}

= (a,d, b,c, e}.
The coarsest one is Ui Thus the only nontrivial finite errofs are
((a,d),(d,a),(v,c),(c,b)}.
The following theorem is another corollary of Theorem 3. It was

first proved in another context by C lbert and Moore bili].

Theorem 5

All errors in an sutomaton M are finite if and only if M has

a reset tape. (A tape t is a reset tape if S(qi,t) is inde-

pendent of qi') .

Let us now look at another exemple to show the use of this theorem.

15

Example 2

Let M = ({a,b,c,d), {0,1}, &) where & 1s shown below.

__’___

It is easy'fo see that all the errors are correctable. Hence by Theorem

—

o

om0 o
AR o oo
oo 0|

3, % = {375:3751 and all errors are finite. Upon examination it can be
seen that the tape 000 is a reset tape since 8(qi,OOO) = d regerdless of
qi. Thus we could have found that all errors are finite by applying
Theorem 5,

In the course of studying errors in finite automata, it became ob-
vious that many of the error properties (as well as other pfoperties) of
finite automata were more easily discussed in terms of the semigroups
of the automata [b25, b26. We summarize some of these results here,

without repeating the exposition of abstract semigroups contained in the
complete report.
Definition 6

Let M = (Q, £, 8) be a finite automaton. Sy the semigroup

of the finite automaton M, is the semigroup whose elements

are transformations, mapping the set of states Q into itself,
induced by the next state function 5. The multiplication

operation By+8p is the conposition of 8, and 5, «

It is clear that the multiplication operation in the above
definition is associative and that the set of 1its elements is closed

under multiplication. Hence SM is indeed a semigroup, as desired.

e e < i

16

Theorem 6
Let E be an error in a finite automaton M. Then E is
1. correctable if and only if E is corrected by some
minimum idempotent of SM.
2. firite if and only if E is corrected by every

minimum idempotent of Sy.
L

We will now state an immediate corollary to this theorem. We
will use n to indicate the partition induced by the mapping associated
with the semigroup element s. That is, two elements are in the same

class of the partition ns if and cnly if the mapping s takes them into

the same element.

Theorem 7

M error E = (qi’qj) in a finite automaton M is
1. correctable if and only if q, = qj(nS) for s,, some
i

minimum idempotent of S, .

M
2. finite if end only if q, = Q; {(n n)} where {si} is
s.} °i
the set. of minimum idempotents ofisM.

It follows that the partitions assoclated with the minimum idem-
potents orf SM completely characterize the error properties of the
automaton M, If the partitions associated with the minimum idempotents
are known, then we know wnich errors are correctable, which are noncor-

rectable, and which are finite.

3

17

Definition 7 (Perles, Rabin, and Shemir, b32])
A finite eutomaton M = (Q,Z,8) has a k-definite move function
if and only if for all seguences Oy «+0 Op of k letters from
Z; B(qi, Ty eee ok) = 8(qJ, Oy een ck) for all 9,9, in M.
Note that this implies that 5(qi, O o ck) = B(qj, Opsyr *v o
Gy0) - ak). We will informelly call a finite automaton
k-definite if its move function is k-deiinite.

The tie up of definite errors and definite automata is clearer safter

the following two theorems which are due to Hartmanis and Stearns b20].

Theorem8
A finite sutomaton M = (Q, £, &) is definite if end only if

all its errors are definite.

Theorem 9

If M 1s a finite automaton, then M can be decomposed into a
series connection of two finite automata Ml and M2 as shown
below with all errors in M2 being definite and no nontrivial
error in Ml being definite. Hence M, is a definite automaton.

2
This theorem follows from the fact that there is a partition with
substitution property ﬂD on the states of M with .the property that an er-
ror E is definite if and only if ﬂE < 7y The next two definitions and

theorem give a characterizetion of the semigroups associated with defi-

nite automata.

.

18

Definition 8
T.et 8§ = (S,+) be a semigroup. Then, an element z of S is

a right zero if and only if for all s€5, s.z2 = 2.

Definition 9
We will say that M = (Q,Z,8) is a union of the finite auto-
mata M, = (Qi’ z, 61) i=1,...,k if the following conditions
hold:
(1) 14y = Q) NQ is empty.
(2) v Q =24q.

i
(3) 8, = © restricted toQ,.

Theorem 10
Let M = (@, =, &) be a finite automaton. Then the following
two conditions are equivaleﬁt: '
(1) M is a union of definite automata.
(2) Sy contains a universal minimum right ideal U such that
all elements of U are idempotent and all the idempotents

of SM are in U,

Since a finite automaton is a union of definite automata if and
only 1f all its errors are definlte or non-correctable we know & method
of checking feor this condition from the semigroup. The next two theorems

which are corollaries of this theorem give us alternate checks.

Theoren 11

M is a union of definite automate if and only if every idem-

potent of S, is a right zero.

M

—

19

Theorem 12
M is a union of definite automata if and only if the set

of idempotents of SM is a minimum right ideal.

Theorems 10, 11, and 12 can be applied to give more :esults on
definite errors. For ev mple, a finite automaton is such that all its
finite errors are definice errors 1f and only if there are no idempotent
elements outside its kernel. Also, it can be shown that linear automata
E have only errors which are either non-correctable or dgfinite. %he
; gbove results tell us something about the structure of semigroups of
r linear automata,
i The complete peper by Dauber contains a number of extensions of
! the theory, which will not be discussed here. However, before conclud-
ing, a few words should be said ebout the applicability of the model.

There sre three basic points which must be examined: +the use of
a finite automaton es en error model for a digital system, the defini-
tion of correctability, and the use of a random source driving the
L finite automaton, If we are considering synchronous digital systems
with fixed memory capacity, then finite automate are good models. With
memory which is extendable but bounded, they are still good models.

However, 1f we consider the memory to be arbitrarily extendable then we

would need a model with an infinite number of states. As was shown in
Dauber [36], the results given here do not carry over to this case.

The definition of a tape correcting an error also is not a bad
model 1if we are careful to keep in mind what it means. It does not mean
that all the outputs will be correct. It only says that all the outputs

which oceur on inputs after the correcting tape, are correct.

The use of a random source driving the automaton may or may not be
appropriate depending upon the application. If we are modeling a digital
coder such as might be used to code information on a space satellite
gathering radiation information, then it is a good model. If, on the
other hand, we are trying to model a digital computing system then it
is a poor model. This is due to the fact that the input is a program
which 1s not random but is truncated. However, the assumption of a ran-
dom source at least gives us a way to start dealing with the problem.

It may be possible in later wc -k to modify these results for the case

vhen we are driving the automaton with a structwred source.

1.3 Formal Languages

Up to the present time the-only aspect of programming languages
which has been treated formally is syntax. The concept of semantics
or 'meaning' which appears to be of fundameptal importence both to the
computer language designer and user has, up to this point, not been
investigated. This omission, it appears, is due mainly to the fact
that there does not exist, in general, a formal definition of the con-
cept. This shortcoming must be overcome before the theory of language
can hope to answer a number of important questions arising in computer
languages.

The general theory of formal lenguages classifies languages into
several types defined by the grammars which specify them. Chomsky b6]
gives the types numeric designations, with type O being the least struc-
tured and type 3 the most structured. Two types have been shown to be
equivalent to known classical structures; type O to Turing machines, and

type 3 to finite state machines. Types 1 and 2 are known as context-

gl

NRTTLD

e iah i e

sensitive and context-free languages, respectively. The most useful
representation in the case of programming languages appears to be cone
text-free languages. The theory of context-free languages, their charao-
terization and properties have been thoroughly studied [b6]. In recent
years there has been an effort made to study programming langueges within
the framework of context-free languages.

Any application of the theory of formal langueges to programming
languages must differentiate between the reference language and its real-
ization on a computer, or its hardware representation. 1In order to
define these two we will quote from the ALGOL 60 report [b30]:

Reference Language
(1) It is the defining language.
(2) It is the basic reference and guide for compiler
builders.
(3) It is the guide for all hardware rerresentations. .
Hardware Representation
(1) Each one of these is a condensation of the reference

lenguage enforced by the limited number of characters
on standard input equipment.

(2) Each one of these uses the character set of a partic-
ular computer and is the language accepted by a trans-
lator for that computer.

The reference languagesof the common problem oriented langueges
such as ALGOL, MAD, and FORTRAN, are context-free [blé]. This property
only implies that there exists a set of rules or specifications defining
the syntax of the individual strings in a problem oriented reference
language which are context-free. f1lhis set of rules along with the set
of symbols is & grammar for the reference language. Given this grammar
we know that the process of determining whether a given string is an

element of the language or not is well defined. The theories of automata

and context-free languages provide us with a specification of a machine

s

22

to implement this prccess. However any attempt to generalize this notion
of mermbership to meaningful sequences of strings within the language is
docmed to fajilure at present because semantics has not been brought in.
Thus the theory gives us a way to check if the individual statements of
the language are well formed but at sresent does not allow us to determine
if a program is meaningful; that is, if it will execute with a given set
of data.

A second area in which the theory of context-free languages has made
a contribution to prograrming languages is ambiguity. Thé coacept of am-
biguity in the formel theory is associsted with grammars. Intuitively,

a grammar is syntactically ambiguous if it generates the same string in
at least two distinct ways. This concept can then be generalized to
languages. A language is inherently ambiguous if every grammar genera-
ting it is ambiguous [bl15). It is obvious that inherently ambiguous
programming languages aée to be avoided. However it is undecidable
whether an arbitrary language is inherently ambiguous. This should stim-
ulate attempts to define a large class of languages, rich enough for
programming languages, in which there exist a decision procedure for
inherent ambiguity.

The formal definition of ambiguity, unfortunately, does not encom-
pass all the characteristics of what is, in general, meant by the term
ambiguity in programming languages. The missing element again is seman-
tics. What is rneeded is a2 way to determine whether or not a statement
'means' two different things, for if a statement means two different
things the translating program will have to pick one and hence in some
situations gives rise to a programming error. Within the existing for-

mal framework a detailed exasmiratlion of to what extent ambiguity causes

o a—

o g S ity s e

dnbibihll |

e v o2 W A TV s Uiy P e L A

23

programming errors is needed. This would allow a characterization of
types of ambiguity within a programming language.

We next discuss the application of the theory of formal languages
to the translation problem. In formal langusges the translation problem

is generally stated in this form: Given a language L. of type X and a

1
language L2 of type Y, is there a mapping h of type Z such that h maps
L, into (onto, into infinite subset of) L, [b17] 2

Unfortunately, in practice a systems programmer is not interested
in the existence of an arbitrary mapping. He is interested in the exist-
ence of a mapping which breserves the meening. In other words, if
-someone writes an ALGOL program he would like it to be translated into
a machine language program which does what he wants it to do. Thus
once again the question of semantics arises.

Programming language designers are primarily interested in the
answer to the following question: For a given language L2 (viz. a
machine language) and a give.. language Ll-(viz. the ALGOL reference lang-
uage) can we f£ind a language L3 which, in some sense, is like L, such

2

that there is a "good" algorithm for translating L3 into Ll which pre-

serves meaning.

Work toward answering this question has just begun. So far no work
has been done on translation which preserves meaning or on approximating
one language with another. However there are now many people working
on the question of gocd salgorithms. The work by Hartmanis and Stearns
is a good example [b21). In *heir paper, they give a classification of
functions according to their computetional complexity. The computational
complexity is a measure of the speed with which the function can be cal-
culated by a multi-tape Turing machine. Since there 1s a strong corres-

pondence between algorithms and multi-tape Turing machines, we then have

Ll

L

Lugbullibalug

AL

ym

24

a measure of for algorithms.

Fortunately, the study of formal languages has aided the systems pro-
grammer. For one thing, by studying the context-free languages and then
translation, the programmer gets a much better feeling of what the trans-
lation process is like and what it should do. For instance, by the study
of push-down automata, programmers have deﬁeloped a whole new technique
known as the push-down list. This is of great help in many translation
schemes as well as for other programming purposes. The first mention of
a scheme of this type appeared in 1954 in a paper by Burks, Warren, and
Wright (b4]. For a more current theoretical discussion, see the paper
by Schutzenberger [034], end for a discussion of its use in various appli-
cations, see Evey [p12].

Schutzenberger formally defines & speciel type of sutomaton which
is not as powerful as a Turing machine but has more power than a finite
automaton. He calls this automaton a push-down automaton although his
use of this term is not exactly the same as that of other asuthors. He
then shows that the set of words recognized by these automata are unam-
biguous context-free languages and thaet there is a weak converse to this
property. Evey's methods, on the other hand, are much less formal. He
defines a class of machines called push-down machines. Then he shows that
for every context-free language there corresponds a push-down machine
that recognizes it, and conversely, the set of strings recognized by
any tush-down machine 1s a context-free language.

This brings us to a consideration f the hardware representation.

In general, for a given reference languege, there will be many compiler
realizations of the lang =2ge. Furthermore, due to the physical consider-

ations of finiteness, each of the compiler languages is only an spproximate

2>

reslization of the reference languasge. These approximations, in general,
amount to a truncation, thus giving a finite language. However the full

extent of the restrictions thap'a compiler places on a reference language

is not known in general. It is an open question to what degree the theory

of context-free languages will be useful for compiler languages. Further
investigation along these lines is certainly called for.

In summary, then, the situation is as follows. The theory of formal
langusges today is only of limited use to someone writing compiler
languages. As the theory is extended to more class of languages, par-
ticularly those intermediate betweeh context-free languages and finite
sutomata languages, it will become more and more useful. Also, if the
syntactic theory were extended to include some of the rudimentary concepts

from semantic theory, there would be even more areas of potential appli-

cation.

e

26

2. Theory of Algorithms

2,0 Introduction

The theory of algorithms relates to computer programs in the same way
automata theory relates to the structure and the behavior of computers.
(We interpret the word algorithms in a broad sense, without limiting our
attention tc formal systems of the Markov type.) The theory of algo-
rithms enccmpasses such questicns as: How should algorithms be formally
characterized? What representations are appropriate? How do the compu-
tational comﬁlexity and storage requirements of a given algorithm vary
with the problems in its domain? Does a given algorithm terminate for

-

gll preblems in its domain? Is the result of‘applyfhé'an algorithm
unique for all problenm‘in its domain? When does an optimal algorithm
exist {for some reasonable definition of optimality)? How can an optimel
algorithm be determined?

Cur program in this -.rea encompasses three projects:

(1) The study of "monotone congruence" aslgorithms by R. F.
Arnold and D. L. Richards. A technical report has
been issued and journal publication is expected.

(2) The formalization of discrete dynamic programming algo-
rithms, and the investigaticn of its connections with
automatea thecry, by R. M. Karp.

(3) The study of "branch-and-bound" algorithms, being

carried on by E. L. Lawler and D. E. Wood, under principal

sponsorship of National Science Foundation Grant GP-2778.

s e oo QI YO 3, SRR RO . i

27

2.1 Monotone Congruence Algorithms

Given an associative system (semi-group) in which each element is
assigned a cost and in which an equivalence relation obtains between
elements, it 1s often of interest to ask the question: What is the least
costly word equivalent to & given word? Three examples of such problems
are the travelling salesman problem studied by Dantzig, et al. [b8],
the cptimum control problem (cf. Pontryazi. | 33]), and the problem of
finding the least word which performs a giver mapping upon the states of
a finite automaton. Algorithms do nct exist for all such problems, since
the solution may, in genéral, regquire the solulion of the word problem
for semi-groups, which is known to be unsclvable (Davis (b9]).

The problems mentioned gbove involve natural two-sided congruence
relations. Two input words x and y to a finite automaton may be regarded
as equivalent if they perfqrm the same mapping from the set of states of
the automaton to itself; i.e., if M(s,x) = M(s,y) for all states s where
M is the transition function of the automaton. A simplified model of
computer programming can be cbtained by reinterpreting the input words as
programs, and the initiel state as data upon which the ; :grams act; here
the programs are not self-modifying and contain no instructions which
transfer control. Programs P and Q are then equivalent if they reach the
same result for each set of data; in that case the programs RPS and RQS
must also be equivalent, R being run immediately before P (or Q) and S
being run immediately after. Thus the eguivalence relation satisfies
the definition of a two-sided congruence.

The programming and automaton problems can be solved by enumeration
if necessary; however, the solution algerithms are often impractical and

may give no intuitive insight into the structure of the optimizing processe

itself. It is hoped that greater insight and more effective algorithms

e Py Attt h oy e
Lo [I,

can be found by studying the general class of associative systems with
two-sided congruence relstions, arclass which contains prob.ems of all
degrees of difficulty.

The theory of monotone congruence algorithms applies if a two-
sided congruence relation exists and there exists a total order relation ,
on the costé of the words, which has:certain natural properties. The

properties of this class of algorithms has been investigated [a2] and

i
o Wit

a general result concerning order relations on finite alphabets estab-
lished.

A Markov normal algorithm on a set of words Z* is a finite ordered
list of substitutions of £*. For an order relation and an equivalence
relation, a monotone congruence algorithm is a Markov normal algorithm
A for which:

(1) A{w) 1s minimal whenever it exists.

(2) for each substitution x =y of 4, x >y and x ~ y.

In terms of computer programming, the words may be programs or
systems of subroutines, the letters of the words, instructions or sub-
routines. The order relation relates the cost of a program, i.e. in terms
of execution time, space required, etc. The equivalence relation equates
programs which perform the same action on the internal states of the com-
puter. A monotone congruence algorithm is then a succession of replace-
ments of a subprogram with a less costly one which computes the same
function.

The first principal result established is that for any monoctone
congruence algorithm A and any word w, A(w) exists; i.e., that every

monotone ccngruence algorithm always terminates. The proof depends on

29

a Quite general theorem about total order relations on &¥, i.e.:
Every total order which is a refinement of the inclusion partiel
ordering is a well-ordering.

Auxiliary letters are pérts of words whick appear only in the inter-
mediate stages of the application of an algorithm. Concluding substitu-
tions of an algorithm are those which terminate the process immediately,
without exhausting all possible other steps. It is proved in [a2] that
every monotone congruence algorithm is equivalent to one which bas neither
auxiliary letters nor concluding substitutions.

The second principal result is that every class of mutually cguivalent
monotone congruence algorithms contains a unigue minimal algorithm, called
the core slgorithm, which can be obtained by applying any member of the
class to itself. The algorithm is unique up to the order of the substi-
tutions and minimal with respect to the number of substitutions. A
uniformly optimal algorithm is one which requires the fevest number of
steps, or applications of the algorithm, to terminate. The study of
optimality reduces to the study of the algorithms which can be produced by
reordering the substitutions of the core algorithm. It has --c2n shown, .
however, that a uniformly optimal ordering of the substi. .ons 7es not

always exist, and that more than one uniformly optimal ordering may exist.

2.2 Discrete Dynamic Programming

Over the past several years dynamic programming has emerged as an
. important computational tool for the solution of multistage optimization
problems. It is, therefore, surprising that the technique has never been
precisely defined, and that the Principle of Optimality, which underlies

dynemic programming, has not been given a precise and general statement.

P R R T N T T T P T ey eyt

30

R. M. Karp, together with M. Held of International Business Machines,
Incorporated, has underteken to construct a mathematical theory encom-
passing the domein of discrete, deterministic dynamic programming.

The two central concepts of this theory are the discrete decision

process and the sequential decisjon process. A discrete decision process

D = (A,8,P,f)
is specified by A, a finite set of primitive decisions, S, a surset of
all finite sequences of decisions, P, a space of parameters (i.e., prob-
lem data) and a real-valued cost function f with domain S »>< P. The
elements of S represent feasible policies, and the problem is to construct
an algorithm to find, for any given péP, an element se€S minimizing f(s,p).

A sequential decision process is specified by a finite automaton o

with input alphabet A which recognizes the "event'" S, a parameter spece
P, and a function h with the following interpretation: 1if the parameter
specification is p, and state q of (I has been reeched by an input se-
quence x having cost &, then the cumulative cost efter the further eppli-
cation of input'a is h(g,q,a,p). The process is monotone if h is an in-
creasing function of §.

Thus, a sequential decision process consists of a finite automaton
together with additional cost structure., The minimizaticn problem for
a sequential decision process is that of finding an input sequence in
the set S having minimum cost. A principal result of the theory is that
if the sequential decision process is monotone, this minimization prob-
lem reduces to the solutjon of a system or recurrence equations of the
type assoclated with dynamic programming; and, conversely, every such
system of recurrence equations can be associated with the minimization

problem for some monotone sequential decision process. A second princiral

31

result is the characterization of the possible representations of a dis-
crete decision process by a monotone sequentlial declsion process having
the same minimization problem. This problem is akin to that of relating
behavior to structure in finite automata, and similar methods are used.
Thus, we feel that a useful and novel coupling of autémata theory
with optimization theory has been achleved. It is our cconviction, based
on the exeamination of many examples, that any dynamic programming formu-
lation of the optimization problem for a discrete, deterministic process
can faithfully be interpreted as the representation of that process by a

monotone sequential decision process.

2.3 Branch-and-Bound Algorithms

Anong the most general and most useful approaches to the solution of

constrained optimization problems is that of "branching-and-bounding" [all)

(or, according to Bertier and Roy [b2], "separation et evaluation
progressives"). Most commonly, this is a technigue under which the
space of feasible sclution 1s repeatedly partitioned into smeller and
smaller subsets, and a lower bound (in the case of minimization) is
calculated on the cost of the solutions within each subset. When the
bound for any subset exceeds the cost of a known feasible solution, it
follows that no solution within the subset can be optimal. The parti-
tioning continues until a feasible solution ié found such that its cost
is no greater than the bound for any subset.

There has been some recent interest in branch-and-bound methods
for integer linear programming and for the traveling salesman problem.
These algorithms should perhaps be cheracterized as "meta-algorithms,”,

since they represent methods by which known algorithms can be embedded

| ‘\m“.

32

in & higher level procedure which can be applied to solve problems outside
the domain of the original algorithm. For example, suppose we are con-

fronted with a "difficult"” constrained optimization problem of the form

minimize c(o)(x)

subject to
() >0
1 -
0
g (x) >0 (0)
and xex(o),
where X(O) denotes the permissible domain of optimization, e.g. the

positive orthant of Euclidean n-space. (We let x denote a vector

(xl,xz,...,xn).) The problem is "difficult" to solve directly, possi-
bly because the objective function or constreints are nonconvex or
because some or all of the variables are restricted to discrete values.
Unéder the branch-and-bound approach the original problem is re-
placed by a nurber of "bounding" problems. We refer to the original
Froblem as problem (O), and denote the bounding problems which replace
it as problems (1), (2), (3), ... etc. The cost function, constraints,
end domain of optimization of problem (j) are lsbelled with superscript

(§). Thus, problem (j) is of the form

(3)(x)

minimize ¢

subject to

33

(J)(x)

&

v
o

(3)

and xeX(J).

A definition of the branch-and-bound process can be given induc-
tively. That is, given a set of bounding problems at some intermediate
point in the calculations, it 1s specified how a new set of bounding
problems is obtained by "branching".

We let the current set of bounding problems be denoted (1), (2),
(3), ..., (p). 1In order to be a valid set of bounding problems, it is
sufficient thet the following bounding requirement be satisfied:

(B) 1If x is a feasible solution to problem (O), then there exists
a bounding problem (j) for which x is feasible and c(j)(x) < c(o)(x).

The bounding problems are, by assumption, "easy" problems, and can
be solved by appropriate direct methods. Let the optimal solutions
thereby cobtained be denoted x(l), x(e), ceny x(p), respectively. The
solution x(k) is optimal for problem (O) if

(51) c(k)(x(k)) < c(j)(x(j)), for j=1,2,...,p

(52) x(k) is feasible for problem (Q)

(s3) c(o)(x(k)) - c(k)(x(k)).

A solution x(k) which setisfies (Sl), (S2), and (S3) solves the
original problems. '"Branching", i.e. replacing one of the existing
bounding problems by two or more hew bounding problems, must continue
until & solution which satisfies (S1), (S2), and (S3) is found.

The work under this project has encompassed:

(1) A survey of branch-and-bound algorithms as applied te various

3L

[—

types of optimization problems.

[P

(2) The development of new branch-and-bound algorithms

for problems of interest.

. 1

(3) An investigation of optimal strategies ..r brenching.
I.e., strategies which minimize the len, .. .f compu-
taticn or the amount of computer storage.

(4) The development of a stochastic model for branching
algorithms. It is hoped that this model can be used
toc predict when branch-and-bound methods can be success-
fully applied and when they cannot: i.e., which distri-
buticns of costs in the domein of feasible solutions are

favorable, and which are not.

35

3. Systems Analysis

3.0 Introduction

The development of models for the analysis and study of the funce
tional parté of informatlion processing systems and the classification
of information processing systems and problems are the objectives of
this part of the research program. The model of a functional part
of an information processing system should permit comparisons to be
made between known solutions and should suggest new solutions. This
research is abstract but practical problems in information processing
systems design have a direct influence on the formulation of the
models and the questions asked.

Major emphasis 1s given to algebraic models though statistical
models and simulation are not excluded from the study. Automete theory

models are used when applicable. Models have been developed to study

problems associated with storuge, multiprocessor assignment, and control.

R. F. Arnold has developed a mcdel for the study of the addressing for-
mat for random access storage. Finite state machines are used in the
formulaetion but statistical technigues are used in the evaluation. R.
Jump has simulated the dynamic allocation of storage. Karp and Reiter
[al2,al13] have extended and generalized a greph model of concurrent com-
putation due to Karp and Miller (v2s].

Contreol models emphasizing topology and quantity of control infor-
mation have been formulated by H. L., Garner and have shown the need
for a more definitive relationship between the rate of computstion and
the rate of control informeticon, which 1s now being studied. Classifi-

cation and complexity studies are still in the formulative stage.

s

Ll

QTR

T

36

3.1 Storage Format Characterization for Random Access Storage

The large random access store or file is an important part of
existing computer systems and will continue to be important in the
future because of the continuing requirement for large quantities of
reference data. Practical problems exist with respect to the efficient
utilization of such a store. In general, it is desirsble to minimize
the number of Qccesses to the store required to obtain a given record
stored in the file and to maximize the number of filed words in the
store. It is not feasible, in general, to set up & one-to-one corres-
pondence between A, the set of hardware addresses of the store and the
K, the set of keys which are the identifying part of each record. The
difficulty stems from the fact that not all keys are active and the
active keys are not usually distributed uniformly cver the key set. A
sorted file provides a poor solution to this problem since a file sort
is required whenever new records are added. The open file concept pro-
vides a reasonable solution. In a general open file system there exists
a deterministic algorithm which generates a sequence of store addresses
for each key. The record is stored in the first empty storage location
associated with the set of addresses generated by the algorithm. The
algorithm computes f, sometimes called a hash function, which maps K in-
to A. Thus f: K- A. In general, f is a many-to-ore mapping. Idesally,
f should mep the same number of keys to each element of A but adjacent
keys should be mapped into separate addresses in order to bresak up clus-
ters of active keys. An error correcting group code has the property
that any code word is at least a distance d from any other code word. A
decoding functicr. g maps the set of all pcssible received code words

ontc the set of messages; g: R =M. Two elements of R which map onto

37

the same element of M are separated by at least a distance d and an equal
number of elemenis of R are associated with each element of M. Thus g

is a useful hash function and the thecry of ccdes provides the informa-
tion required to design this type of hash function. Number system con-
version algorithms have alsc been considered for the generation of hash
functions. Hash addressing has been effectively applied [bl] to obtain
a stcre organization for list processing. Other applications appear
pbssible but these have not been studied in detail.

A general characterization of the storage format problem for rendom
access stores has been obtained by R. F. Arnold and some examples anal-
yzed. In the type of system considered, there is a conventional randem
access store and a finite automatcn which plays the role of "reader-
interpretor”.

A random access store is given bty a pair of sets A and W.

The "state" of the store is given by an arbitrary function ¢c: A=W

termed the contents function.

A format for the representation of functions from the set X into
the set Y is given by & finite sutomaton with the state set S, alphabet
W and transition function M: S X W = S. The "output" of the automaton
is given by a map ¢: S - AU Y. Also defined is an "initial state"
function ¥: X = S.

A format determines a mapping from the states cf the store (A,w)
into the set of partially defined functions from X into Y. .Let c be

a contents function; then fc: X =Y is defined as follows. We first

define a partially defined function kc from S intc Y.

#

If ¥(s) € ¥ then Kc(s) p(s).

n (M(s,c(9(s)))) -

1]

If ¢(s) #Y then Kc(s)

Ll

b

R T

B

If kc(s) is not determined by either of the above, then it is left
undefined.
Then £_ (x)dgfkc(\y(x)) .

In a sense, this 1is similer to the repeated use of hash functions.
Here, if the output of the automaton is not in the range of the function,
the trensition function is applied to obteir a new state whase output may
be.

One initial problem is thét-of determining for some given function
from X to Y and a given format, a contents function which "represents"
it. Practical application requires that the representative be easily
corputed and that given a representation of one function, a representative
of a "neighboring" function be very easily computed. By a neighbor here
we mean a function whose values differ for only a few arguments. Also of
interest is the obtaining of useful characterizations of the class of func-
tions represented by a given formaﬁ.

This section gives examples of certain formats where very satisfac-
tory informaticn can be obtained. All of these have the property that
the structure of the sutomaton is pseudo-rrobebilistically determined
vhich then justifies certain probabilistic arguments as to the existence
of representatives and the computational and information theoretic
efficiency of the formats.

The automata in general "contain" hash functions. 1In fact, this
entire work can be considered as a certain natural extension of the
hash function technique in which the primary disadvaentage of hash
addressing, namely the many-to-one character of the hash function, is

obviated by artificially enlarging the range of the hash functions.

The work to date appears to provide significent improvements in

XY

R

i

SR —

e m

39

handliing a wide variety of content-addressability problems where the read
to write ratio is fairly high. i

0f more abstract interest is the relation between the structure of
the automaton and the difficulty of the optimum representative computa-
tion. For certeln formats this computation is trivial while for others
it appears to become arbitrarily difficult.

We now consider three exeamples which are specific realizations of

the general formulation for the random access store.

The linear functional format is the most efficient with respect to

storage space at the expense of reguiring extensive computations to com-
pute the appropriate representation of a function.

For this example the range of the function Y = Z2 = [O,l] and a
store with n-bit words is used so W = (Ze)n. The binary words of
storage are treated as vectors over the mod 2 field.

Let T be an auxiliary "ccpy"” of (Ze)n. The hash functions employed
map frum, X, the domain of the functicn, into the product set AxT,
vhere A is the set of store addresses. For the 1-th hash function

hi(x) = (ai(x),ti(x)) 1=1,2,...
The contents for ¢ assigns a particular element of W to each store
address acA; c{a) = weW. Assume ¢ has been determined. If c(aJ) F O
and c(ai) - 0 i < §, then fc(x) = c(aJ(x))-td(x) (dot product)
= w-ta(x) €2,
Ir c(ai) = O for all 1, then f(x) is undefined,

For a given function £: X = Y, we now ¢onsider the process by which
a representative ¢ is computed, if it exists.

Consider the subgcets in X which are the l.verse images of all a

under hl. For mach location agA, either a weW exists or it does not such

1
|
P

ko

that w-t(x) = £(x) for all x in the inverse image of a. If no such
w exists c(a) is set equal to zero, and all elements in the inverse
image are assigned new addresses using h2' It is now necessary to
recheck, for all x, fc(x) = wet(x) since new x's may have been added
to the image set of any a€A. This will result in more a's being
assigned contents zero, and create certain new "unhoused" x's. If

this process terminates, then clearly, a representative c¢ has been
found, while if it does not, no such ¢ exists. This last ctatement

has not been proven; however, tie c derived by the above process can

be shown to be uniformly cptimal in the sense that the set of a's

whose contents is zero in any representative ¢ contains the set of a's
set to zero by the above process. Is the probability that a vecter
exists in (ZE)n which satisfies m randomly selected linear constraints
the principal information necessary to quantitatively analyze the
feasibility of this storage format? A lower bound for this probability
is given by the probability that m vectors in (Ze)n are linearly inde-
pendent, which is p(m,n) >1 - 1/2°°®,

Observe that p(m,n) is dependent only on (n-m). The number of
constraints that can be applied to a glven location can be increased
without a decrease in the probability that the constraints can be satis-
fied if n-m is held constraint. Thus a requirement for x additional
constraints require x additional bits per word in store.

If a representative c exists, then there exists an average inverse
image size for each address lncation. Furthermore, 1if X1s large and
the hash functions are well behaved, the probaebility distributions of
addresc inverse image sive will be Poisson with mean N. It is then

possible to write equilibrium equations which must hold under the

i

1 abbb

ares Linilade

e s A A N

U

s . s ———

S

IR

P

assumption that the computation process terminates.

Let p be the proportion of locations set equal to zeroc.

n-1 m 00 n
=N A 1 =N A
o=), TR) T
2
m=0 m=n
An ideal hash function assigns X/A = u, to each location a. We must
also have:
2 M
N = Lt poptp Ut el = o

These relations form the necessary basis for study of the process.

The hash format is closely related to the conventional technique

of storing in each location both the x and f{:) velues. The technique
does nothing more than replace x with i1ts hash imege, which at once
removes the structure from X and in so doing saves space.
Tris format is defined as follows. We require an auxiliery set
T, whose size must be decided upon by a consideration of other parameters
of the problem. The set W is interpreted as {TxY) U Q where @ is a set
of one or more elements which are used to indicate that the standard
format interpretation does not epply and the next location in the se-
quence must be examined.
The hash functions used map X intc A XT.
h(x) = (e (x), t,(x)).
Let
c(a,(x)) £ q and t,(x) = t*(a,)
the # 15 usel to indicate values stored. t*(ai) designates the tag part
of the contents of 8, and let 1 be the least such 1 for which this)

holds. Then

t (x) = Y*(ai)

c

e

L2

where y*(ai) indicates the portion of the contents of a1 from the set Y.
If no such i exists, then fc(x) is left undefined.

More informally, the reading algorithm consists in locking in
successive locations, continuing as long as one finds either a "q" or a
hash tag which does not match.

A computation of representatives for this process is fairly
straight-forward. One "stores" the values one at a time, keeping track
in a separate store, of the set of x's mapping into each address so far.
For each xe€X, one computes hl(x) and if nothing yet has been mapped into
al(x), the pair (t*(x), y(x)) is stored there. If some x'e€X has already
been mapped into the locations resulting in (T(xl), y(xl)) having been
stored there, compare t*(x') with t(x). If they are different, go on to
he(x), repeating the sbove process. If tl(x) # t¥(x') then not only
must cne continue onto he(x) but also the contents of al(x) must be set
equal to g and x' must be put back into the set of as yet unassigned x's.
If al(x) already is set to q, go on to h,.

For a given size store and given % and f, it is of interest to con-
sider liow the stcre should be partitioned so as to yield the fewest num-
ber of seeks per reterence. C(Clearly, as T i1s made large, A is reduced
resulting in more references to each address. On the other hand, each
reference that is made is less likely to resul* in the match of hash
tags for different x's and hence the "loss" of a location a3 a value
storing slot.

In & manner similar to that used in the linear format, a pair of
equations may be written describing the equilibrium state of the writing

process, which must bte analyzed numerically to obtain quantitative

information about the process and the optimum value of the parameters

stored.

The multistate reader format technique is of garticular interest

for representing functions with highly unbalanced distributions on their
ranges.
For this example let ¥ = (a,b} and W = {0,1). The hash functions

used map from X to A.

Let c(hi(x)) 0 and c(hJ(x)) =1 J <i.

Then £ (x)

¢ a iff i=s=2mod 3

b iff 1 # 2 mod 3.
If c(hi(x)) =1 for all i, fc(x) is not defined.

The process of computing a representative for a given function is
fairly easy, and closely resembles that used with the linear format.

Start out with all locations set equal to 0. For each x&X in turn,
set equal to 1, those locations necessary for that x to te correctly
mapped. It will be necessery to go through the x's several times until
one gets all the way through without making any changes in c. The re-
sulting ¢ is uniformly best since at each step we only set equal to 1
those locations which must be set to 1 for any representative. Of
course, this process may not terminate in which case no representation
exists.

One generalization of the above format is to replace the modulo
three counter with arbitrary n > 2, and map the n congruence classes
arbitrarily into some Y. Any suci. format will have essentially the
same representative computation procedure as the above,

For large n and all but one congruence class mapped into the same
element y%eY, it is clear thet if ¢ were chosen ut random, the probabili

that fc(x)-y* is very large. Hence, "most" of the contents functions

ty

L

represent functlons which are highly unbalanced on their range. While
this is not in itself a proof that such a format is appropriate for
representing such functions, it is a necessary condition and hints at
how such a proef might go.

Still further generalization of the above format suggests replacing
the 3 counter with an arbitrary finite automaton. In one such generali-

zation the sutomaton is a S5-state machine in which two of the states

are terminal and have output labels from Y. Observe that events are

associated with each element of Y

Iritisl State

=
[}

(111)% 110

(111)% (0 U 10)

C

which represent the first arrivals to states having the respective labels.
In general, any finite autcmaton having input alphabet W and same of its
states labelled with elements of Y, serves to define a format.

Additional details and extcnsions can be found in R. F. Arnold [al).

45

3.2 Dynamic Allocation of Storage

A set of procedures for dynamic allocation of storage known to
have been ccnsidered for implementation in an important commercial
system, were chosen for evaluation. By means of simulation, it was
found that the procedures were not significantly different in their
performance; hence, the most easily implemented procedure within the
class should be chosen.

-~

It was assumed that the memory is divided into pages, and that the
pages are assigned to, and released from, programs as needed. Eacﬂ—-Fi
program requests and releases small blocks of contiguous words within
those pages assigned to it. Blocks being used by a program ere called
active blocks, and those blecks that are not being used but which are
within one of the pages assigned to a program are called inactive blocks.

Wnen a page is first assigned to a progrem, it is considered to be
a single inactive block. As the program uses it, it becomes broken into
smaller blocks, both active and inactive. New active blocks are created
from within old inactive blocks. If there is no inactive block within
any of the pages assigned to the program which is large enough to satisfy
a request for a new active block, & new page is assigned to the program.
When a block becomes inactive, it combines with inactive blocks on either
side to form & single inactive block. When the last (highest numbered)
page to be assigned to the progrem becomes inactive, it is released
from the program. The object of the allocation procedures is to minimize
the average number of pages assigned to the program.

There ar¢ two somewhat incompatible heuristics that can be invoked.
One is to fill each new request with the smallest inactive block larger
than the request, without regard to the psge in which this block is

located.

The reasoning here is that the larger inactive blocks should be con-
served, 1in order to reduce the probability that a future request can-
not be filled with any existing inactive block. The other heuristic
is to fill each request with the first (lowest numbered) available in-
active block larger than the request, without regard to its size. The
reasoning here is that one should use the lowest numbered blocks, in
order to increase the probability that the higher-numbered pages can

be released in the near future.

A compromise bétween-these two heuristics is obtained by separating
the pages into two sefs. The lower-numbered pages are assigned to the
first set, and the '"smallest block" heuristic is applied to them. If
a request cannot be filled within the first set, an attempt is made to
£311 it from within the second set, using the "first block" heuristic.
The pages can be separated into the two sets according to a fixed or a
computed proportiocnality factor.

The simulated programs had block lengths that were determined by
weighted sums of rormal distributions, and block lifes that were expo-
nentially distributed. An efficiency factor was computed, where

mean number of active words
meen number of active words plus inactive words

EFF =

The results of the simulations showed that efficiences as high as
0.80 can be obtained for some types of programs considered. The average
efficiency for all types of programs simulated was 0.63, More important
is the insignificant difference in efficiencies between the various pro-
cedures for a given program. Hence one concludes that the most easily

implemented procedure is the one to be preferred.

b7

Another question of interest is the effect of page size on the

efficlency of these procedures. This was evaluated by simulating
several procedures with a program which had Poisson distributed block
lengths and exponentially distributed block lives. The mean block
length and life were selected so that the average number of active
words was relatively constant.

As the ratio of length to page size approaches zero, the average
efficiency of these procedures stabilizes at approximately 0.85. The
boundaries created by pages do reduce the efficiency when the page size
is less than several times the average request length. However, with
pages as small as two times this average request size, the efficiency
is only reduced by approximately twenty percenﬁ.

These results, and extensions, are contained in a forthcoming

leboratory report by J. R. Jump.

3.3 Graph Model of Concurrent Computation

It is necessary to formulate languages in which parallel computa-
tions can conveniently be described and to have methods of determining
how much concurrency the intrinsic structure of such a computation
allows. Karp end Reiter [a 12 have studied and generalized a model for
a certain class of parallel computations. This model, originsted by
Karp and Miller [b2L], represents a computational algorithm as & finite
labelled directed graph. Each node represents en operation, and each
branch represents a first-in, first-out queue of data. The sequencing
of the calculation depends on four parameters (each ‘. nonnegative integer)
associated with each branch. For a typical branck p, directed, let us

say, from node 1 to node j, the paremeters are as follows: Ap, the number

g et g

of data words on the branch at the beginning of the calculation; Up, the

et e

number of words placed on the gueue whenever the operation Oi associated
with node 1 terminates; wp, the number of words removed from the queue

whenever the operation O

ey e

3 initiates; and Tp (Tp > Wp), a threshold giving .
the minimum queue length that must be reached before OJ initiates. Each

node initisates when the number of words on each of its input branches is

at least equal to the corresponding threshold. With each node is asso-

ciated a fixed function specifying the manner in which the inputs deter-

mine the outputs. Because of the first-in, first-out queue discipline and

the absence of conditional transfers, not all calculations can be expressed

as computational graphs. It appears, however, that a large class of
i
iterative calculstions can be so expressed. The computational graph \
model is asynchronous, in the sense that the speeds of the operations :
associated with the nodes are varieble and unspecified. Thus, very
many sequences ¢f operation are consistent with a given graph. Never- i
theless, it is shown in [b24] that the results computed in all these
sequences are the same; i.e. computation graphs are determinate. Theorems
are also given in [b2%] which characterize the computation graphs that
represent terminating computations, and provide an analysis of the growth
of data queues.
A principal goal of the present effort is to extend the above model
as far as possible while preserving determinacy. It is shown that
determinacy is preserved in certain cases even when the operation asso-
ciated with a node, os well as the parameters associated with the branches,

are variable. Also, a cmplete analysis of termination and queue growth -

e, -

is carried out for the j :rticular case in which the parameters Up and wp

vary periodically.

49

In [al3), a synchronous version of the computation greph model is
studied. An execution time ti is associated with each node i, and a
determination is made of the fastest periodic rate st which & computa-
tion so described can proceed. This rate may be viewed as an absolute
limit on the parallelism possible in a computation.

This generalized model is better suited as a description of cer-
t,ain classes of computations, particularly iteretive ones. As an exam-
ple, the computation graph for matrix multiplication is considerably
simplified under this general model.

The following problems have been considered. (1) Let G be a

strongly connected computation graph in which, for all branches dp, we

have T_=U_=W_=1. We wish a proper execution of G which is periodic

P P P
in the sense that if a node nj first initiates at time tj, it will

initiate thereafter at times tJ + 7, tj + 2n, ..., where &, the periocd,
is the same for all rodes of (. Clearly, if the computation is to be
controlled by a clock signal, such a proper execution is desirable.

Such an assigmment of times tj to nodes nJ is given. Moreover, with the
proper choice of w, the computation proceeds at a maximal asymptotic
rate. (2) Suppose the frequency of the clock signal controlling the
initiations of the nodes of G is a priori specified. Then we wish the
tj 's, and n of (1) to be integers. It turns out that if =« is not an
integer, the schedule of (1) will not yield integer initiation times.

To aid in the investigation of a periodic schedule in this case, the
so-called free running executicn has been studied. This is the maximal
rate of execution of a synchronous computation graph (one whose initia-

tion times must all be integers). The major results are as follows:

{(a) Let B(t) be the vector of branch weights of G at time t.

"

Then there exist t',N both integers such .hat for ell t > t',
D(t+A) = B(t).

(b) Let &, be the number of initiations of node n, in the period

J J
[t, t+A], t > t'. Then ozJ is independent of j, oz‘j = .
(c) g =n = max fg—%}
loops of G

" where & 1t is the sum around a loop of G of the execution times
of the loop ncdes and & A is the sum of the initial numbers of

data items on the loop branches.

From these results we infer that each node nJ of a synchronous

computation graph under a free running execution initistes ultimately

at times
1 1 1
t., ty+ N, t, 4+ 2N, ...
J} J > J 2
t?, t? + N, t? + 2Ny e
J J J
%, 12+, t% 4 2, ...
J J
-V ore
1 2 a 1
t'<t, <t €. <%, <t, + A,
=3 J J N

(3) For a synchronous computation grapr. Wwe sought an assignment of
integer and pericdic initiation times to the nodes of G. In the case

that

loops of G

is not an integer, this is impossible. However, the following assign-

ment is possible. Let n = g. We cen find integers ti, Ai, A&, cesy qul

such that node ni can initiate at times

51
Ty by At F 2N
1 1 1
TR, b A E N T F ALY 2N L,

Q-1 a-1 a-1
ti + A.i) ti + A.i + N, ti + A& + 2\, cou,

This assignment is such that G computes at the maximel asymptotic rate.

It would be of interest to carry out further studies in which the
computation graph model is generalized to accomodate a wider class of
computations. Consideration should also be given to the problems con-
nected with programming, for a given multiprocessor, a comp. .ation
specified by a computation graph. In particular, the following ques-
tions arise:

(1) 1If we view each node of a computation graph as a computer

capable of performing any of the node operations of G, what

is the minimum number of such computers required under the

varicus schedules of the problems (1), (2), and (3) Just

listed? More generally, if we partition the nodes of G as

to their functions, what are the minimum numbers of nodes

of each type required?
(2) The allocation of storage reglsters for dats queues and

their utilization so as to minimize the number required.

(3) Scheduling problems of the following type: Suppose a compu-

tation graph G requires m, nodes of type 1, 1=1,2,...,n
but only m

{ < m, are available. How can be constrain G so
as to utilize just mi nodes of type i, i=1,2,...,n in an
optimal fashion; i.e. at a maximal computation rate con-

sistent with the constraints?

(4) Progremming for such a computer system,

s ksl

L

Lot Lasust. sibilatine

sl o

52

(5) The synthesis of a computation graph given a computation to

be performed.

3.4 Classification of Machines and Problems

It is desireable to have measures of problem complexity and machine
capabllity which permit relative comparisons between different machine
algorithm configuretions. This is particularly difficult beceause it
is necessary to determine the proper weighting to be given to the variow
rerformance parameters such as cost, rate of computation, size, con-
venience, etc., which musi be considered in the choice of a given machine.
The real world situation is further complicated because it is usually
not possible tc specify a single important problem for a specific machine
since in the usual situation a given machine is assigned many types
of problems. For a specific algorithm it is possible to determine the
maximum degree of parallelism, the minimum number of concurrent time
steps required, the maximum number of time steps required and the maxi-
mum amount of storage required. A different algorithm which computes
the same problem may have different requirements. ¥For any specific
machine problem configuration there is an optimum algorithm which is
dependent on the machine, the prcblem, and the weights assigned to
the performance function. Comparison of machines in a real environment
is difficult because the performance functicn and the optimum algorithm
are poorly defined.

We avoid the specification of any performance weighting function
which is at best a subjective process and cannot be handled in an abstract
study. However the parameters of the performance function can be treated

on an objective basis. This requires that machines be specified in terms

AR ot e

vl

Lt

e p——

of gross characteristics. If the characterizastion of the machine is too
fine then it 1s impossible to obtain a tractable abstraction and if the
characterization is too gross then the abstraction is trivial.

It seems reasonable to firs£ determine the effects of concurrency
and parallelism on the rate of computation. If a single sequence machine

executes a given algorithm in T time units, can m machines execute the

algorithm in less than T/m time units? Further qualifications are neces

sary before a meaningful answer can be obtained for this question. Con-
sider the usual flow diagram language used to describe algorithms for
digital computation. The flow disgram consists of substitution state-
ments which represent the direct computation and alternation suatements
which effect program control. A step in the computation is defined to
be the time period required to execute & statement. We can now ask
whether a multi-machine configuration can reduce the totel number of
staetements of steps required to execute a given algorithm. A program
for a multi-machine processor consists of a number of ordered program
segments. The segments are ordered in the sense that a given segment
requires input data computed by other segments. However, unless there
exists a storage or time limitation, each of these segments can be exe-
cuted in some sequence by a single machine. Thus a multi-machine con-
figuration does not reduce the number of algorithm steps required to
specify a given algorithm. A particular exsmple of interest is look
ahead. A second machine can be used at alteration peints in the program
to achieve lock ahead. This results in an increage in the number of
algorithm steps executed. A single sequence machine, under the assump-
tion of egqual probability at n alternation points, will on the average

require n/2 additional look ahead computetions. The multi-machine

IRFTPNITRE T

™

configuration will compute n look ahead steps, one for each alteration
point.

A reduction in the time required for the computation is obtained by
executing time independent sequences concurrently using a multi-machine
configuration and by reducing the time period required to execute a
given statement by the employment of concurrent or overlapping micro-
operatisns within a given computer. If Tl and 'I‘2 are the average times
required for non-look shead and look ahead computationel steps respec-
tively,and if there are N non-look ahead steps,then the multi-machine

computation periocd Tm in terms of the single sequence period T is

n

T
2
14 =
T
To

813
A\
g1

m n
1+

2NT2

The optimum multi-machine configuration minimizes the time required
for the computation and the number of machines required to obtain the
computation in the minimal time periocd. It is c¢lear that non-optimal
assignments exist which employ more than the required minimal number of
machines such that the number of machines can be reduced without chang-
ing the time required for the computetion. In general, it is not possible
1o achieve 100 percent activity for all machines during the computation
period. The actual number of machines which can be used is a function of
the state of the computation.

The control of the multi-machine configuration adds steps to compu-
tation algorithm. Thus, when no space or time limitations exist it is
not possible, even under the most ideal circumstances, to reduce the

computation period of & multi-computer of m single-sequence machines to

55

less than 1/m of the period required by a single sequence machine.
The previous discussion suggests the following problems: Studies
of the quantity of control information required for multi-computer

operation. Studies of finite automm ta with either space or time limi-

tation ¢r both.

ERrY .- B N L S S T S S S S S S S S R A S Pt e P~ s g e

et et e rdssan e R] 1

4. Combinatorics and Switching Theory

4.0 Intreduction

Most of the effert under this contiract is being expended on "macro-

scopic" systems questions, e.g. problems of organization and control, and
of the utilizstion of storage. Effort is also being given to questions
of switching .circuit synthesis which are "microscopic" in character.
The justification for carrying on this latter type of research is two-
feld. First, it is not always possible to totally separate the macro-
scopic issues from the microscopic ones. An intelligent evaluation of
the practicality of a new computer organization usually requires an
integrated outlook, which takes into account the fine structure of the
system as well as its larger outlines.

Secondly, switching circuit theory is eclectic, drawing upon such
mathematical topics as graph theory, matroid theory, semi-group and group
theory, linear and dyneamic programming, and classical combinatorial anal-
ysis. Techniques which are useful for solving switching circuit synthe-
sis prcblems are usually sufficiently general to be useful for solving
a variety of other combinatorial problems, including many having to do
with macroscopic systems questions. Examples include combinatorial
problems arising in the scheduling of multi-processor systems, the static
and dynamic allocaticii of storage, and the assigmment of capacities to
data channels for maximum performance/cost ratic. It should thus be
clear that our work in this area emphasizes basic "combinatorics" at
least as much as "switching theory."

Qur program in this area falls under the following project headings:
(1) covering Problems, (2) Threshold Networks, (3) Cellular Logic, (4)

Sequential Circuit Synthesis, (5) Miscellaneous Problems. Project (1)

o
il bbby

T L Ry PR

Ay g PO s

O (L BT 1 s A SO | g
L

e i i L

i

" ’ e st s it e
P ————r TSRS TR R e snstestana e o A, (o AN

i

e

ARSI, e, @~

57

is largely completed, and it is expected that project (2) will be com-
pleted in early 1966. Projects (3) and (4) are still in the formative

stage. A description of each of these projects follows.

4,1 Covering Problems

It is generally acknowledged that the central combinstorial problem

of switching theory is the so-called covering problem [a11], which

takes the form:

Minimize
n
ex = Z ¢ 4%y (1)
3=1
subject to
Ax > 1 (@
and
x, = Oorl (J=1,2,...,n), (3)

J

where A is a {0,1)-matrix. (Each element a,, of A is eicher O or 1).

1)
This problem arises in exactly this form in the second phase of the
Quine method of Boolean minimization, and variants of it occur in a
wide variety of other combinatorial contexts.
Research on covering problems has included:
(A) The identification of equivalent problems and srecial
cases, and of relations between them.
(B) The investigation of the "graphic" covering problem,
in which each column of A contains no more than two
nonzero entries.

(C) The discovery of various duality relations, which

hold for covering problems generaily, and of a new

58

method of solution suggested by these relations.

Results under heading (A) will be contained in a forthcoming report

tentatively entitled, "Coverings, Packings, and Euler Lines." These

include the following:

(i)

(ii)

(iii)

P PR T ey Py e

conslder constraints of the form
A >0 (21)

and

X = nonnegative integer (3")
where A and b contain arbitrary nonnegative elements.
Any problem of this apparently more general form is act-
ually equivalent to a covering problem with constraints
of the form (2) and (3).
For every "covering" problem of the form:
Minimize cx
subject to Ax > b,

x, = Corl,
J

there is a complementary "packing" prcblem;
Maximize ex
X <D
§5 = O or 1.

The feasible and optimel solutions of the two problems are

in one-one correspondence under the relation x = 1-R.

We say that a covering problem or packing problem is "graphic"
if its matrix A contains no more then one nonzero element in
each column, and each nonzerc element is 1. There is an ob-

vious connecticn between these problems and problems which

require that the vertices of a linear graph be covered with

(1000 bl 4 ot sy

its edges {that at least b, of the chosen edges be incident

to vertex i) or that the graph be packed with its edges (no
more than bi of the chosen edges be incident to vertex i).
Graphical covering problems and pecking problems are, of
course, complementary, in the sense of (ii). They are also
equivalent to problems in which it is required to find a min-
imum-length tour which will pass throvgh each edge of the graph
at least once. This latter prcblem is solved by choosing a

set of edges, such that when duplicated, an Euler line exists.
Edmonds [bll] calls this problem the Chinese Postman's Problem,

A special case of the Chinese Postman's Problem is the following.
What is a minimum-length input sequence, such that & given sequentieal
machine will be forced through each possible state transition at least
once? This is certainly a question of basic importance in the diagnosis
of malfunctions in sequential circuits.

Results under heading (B)—investigation of graphic covering prob=
lems —are mainly in the explication and simplification of certein unpub-
lished solution methods due to Edmonds. Edmonds devised an algebraically
bounded computation for the Chinese Postman's Problem (a computation whose
length grows only algebraicelly with the numbrr of vertices in the graph)
based on a computational method for packing problems which he calls
"matching" problems.) These methods are, in turn, closely related to
methods for solving the "shortest route” problem. Problems based upon
directed graphs can also be handled without difficulty.

Work under heading (C)--duality relations—has been carried out in -
conjunction with National Science Foundation Grant GP 2778, "Partitioning

Methods for Combinatorial Optimization.” A few fundamental identities

-

weablibinn

will serve to illustrate the duality properties in question. Define
Cov A (the set of covers of A) and C1 A (the closure of A) as follows:
Ccov A = {x]m>1, x; = Oor 1}

cla={(a] a'> A, , for some 1, and aj = 0 or 1}.

Then, for all A,B, such that A = C1, B = C1 B,
Cov Cov A = A
Cov (AUB) = Cov ANCovB
Cov (ANB) = Cov AU Cov B.

These re_stions may be compared with involution and DeMorgan's laws for

sets:
2 = a4
(AUB) = AnS
(AFnB) = AUB.

Computational methods suggested by these relations have been pro-
grammed for The University of Michigen IBM 7090 computer, and are cur-
rently being tested. A previously issued technical report [all] contains
all theoretical results to date. This report has been accepted for pub-

lication in the SIAM Jowrnal.

4.2 Threshold Networks

Work on networks of threshold elements 1s being carried out as the
Ph.D. thesis project of R. Gonzalez, &and should be completed by early
1966. This work is significant because of the new insights it contrib-
utes to the theory of linear inequalities, to nonlinear programming, and
to "adaptive" networks of threshold elements, of the generaml type often

proposed-for pattern recognition problems. Research has included:

61

(1) The investigation of a "dual" method of elimination for
solving systems of linear inequalities.

(ii) The study of minimal synthesis of two-level threshold net-
worke, by an approach analogous to that used in the Quine E
method for minimal AND-CR synthesis.

(111) The synthesis of economicel "universal'" networks which
are capable of realizing any one of the 22n switching fune-

tions of n veriables by varying weights and thresholds.

(iv) The synthesis of universal networks for restricted families ; :

of switching functions, e.g. functions for which there are
many "don't cares."

Investigation of the dual elimination method has shown that it is
actually equivalent to the method of "double description” due to Motzkin,
Raiffe, Thompson, and Thrall {b29], but much more easily derived. The
importance of the method in the present context 1is, of course, that it
provides an efficient method for testing the consistency of systems of
linear inequalities, and thereby resolving the 1ssue of linear separa-
bility for a given switching function.

Dusl elimination provides the backbone of the synthesis method
mentioned under (ii), and reported by Gonzalez and Lawler (a7]. This
synthesis method is a two-phase method, Just like the Quine method for
Boolean minimization. The two phases are:

(u) generste the complete set of "best threshold approximations"

of the switching function.

() select a minimal subset of best threshnld approximations,

such that they, together with one asdditional threshold

element, are sufficient to realize the function.

62

Best threshold aspproximations, of course, correspond to prime implicants,
and the selection problem (b) corresponds to the ordinary covering prob-
lem, but ic more difficult to solve. Algorithms for two-level synthesis
have been programmed for the IBM 7090 computer, and are currently veing
tested,

The synthesis of universal networks relies upon the application of
the following thaocrem obtalned by Gonzalez, We say that s subset of ven
tices of the n-cube is totally linearly separahble if, for every possible
partitioning of the subsst into two parts, there exists a hyperplane

vhich effacts the partition.

Theorem
A given oubset of N + 1 vertices (xo,xl,xe,...,xNJ is
totally linwerly suparable if and only 41f the N vectors
X)X XpXgy ceey XyeXq 8FO linearly independent (the
origin % being chuunn arbitrarily from among the subset

of vertices).

In the capse of problem (iv), tho synthesis method requires that
e minimumerank partition of the "care" voertices be effected, sush that
each equivalence class under the partition ie totally linearly separable,
The problem this roduces essentislly to & typs studied in matroid theory

10], and it appuars to be possible to effect s dirsct spplication of

known results.

L,3 (oliular Logic

It hav bocome & truisn thut the emphasis of switchiing circuit pyne
thesis should be changed to conform with the demands of modern integreted

circuit technology; u«g. componant counts should ve de~emphasized and

interconnections should be given primary attention. However, it appears
that there are, as yet, no well-codified design requirements of the

new technology. On the contrary, the situation is still fluid enough
that many manufacturers would probably be wiliing to design their cir-
cult layouts and interconnection wiring to accomodate a reasonable method
of logical design.

An interesting and imaginative approach to this problem area is
being taken by Minnick and others at Stanford Research Institute under
the name "cellular logic" {b27]. Under this system, switching functions
are realized by two-dimensional arrays of cells, where each cell can
realize any one of several different functions of two variables, simply
by cuttiﬁg the appropriate "cutpoints" in the cell. All connections to
these arrays are made at regular intervals along the edges.

A related approach is due to Canaday (b5], who proposes a two-
dimensionel array of 3-input "mejority" elements. The cells of Canaday's
arrays &re simpler; however, he requires an entirely different—and
probably more difficulte~type of interconnection wiring.

Some of the questions which these proposals suggest are: What
growth rates are necessary for the dimensions of these arrays as the
number of switching variables increases? Can exponential growth be
defeated in any way? What trade-offs are possible between the dimen-
sions of the errays and interconnection complexity? Are there any
advantages to be gained by 3,4,...,N-dimensional arrays? (Consider the
N-.cube arrangement previously proposed for the Michigan Iterative Circuit
Computer.) How shculd sequential circuits be realized by these arrays?

(Minnick's cutpoint logic allows each cell to be a flip-flop, but

6k

systematic design methods have not yet been proposed.) What techniques

can be used to circumvent the delays induced by many levels of logic?

L,4 Sequential Circuit Synthesis

Recent progress in the~decomposition of finite automata includes
the reformulation and simplification of the Krohn-Rhodes theory by
Zeiger [b37), and new results on the reduction of feedback loops by
Friedman [bl3) and Brzozowski [b3]. A few tentative efforts have been
made to apply these and other theoretical results to the synthesis of
sequential circuits from a restricted set of simple modules. It seems
not unreasonable that these efforts may eventually lead to efficient,

systematic design methods for sequential circuits.

As in the case of cellular logic, plans for this project area

are indefinite.

4,5 Miscellaneous Problems

Sonie minor effort has been devoted to combinatorial problems

other than those described ebove. These include:

(1) Optimal encoding for the discrete noiseless chammel with
an alphabet whose symbols have unequel durations. This
work was originally reported on at the International
Conference on Microwaves, Circuit Theory, and Information
Theory, Tokyo, Jepan, October, 1964 [a9], and haz row been
revised and new tables for determining bounds on optimum

encodings have been calculated.

P

(2) Optimal deferral scheduling for multiple channels and

65

linear cost functions. This is an extension of previous

results published in Management Science [alO]. It is i

shown that a dynemic programming method of solution exists
and that such an optimal schedule for n jobs and m processors
can be determined by an amount of computation which grows

as . This result depends on the linearity of the cost -

function.

[al]

(a2]

[a4]

[a5]

(a6]

(a7]

(a9]

{a10]

{all]

66

Publications by Laboratory Personnel

Arnold, Richard F. and Richards, Donald L., "Monotone Reduction
Algcrithms,” International Conference on Microwaves, Circuit
Theory, and Informetion Thecry, September 196k.

Arnold, Richerd F. and Richards, Donald L., "Monotone Congruence
Algorithms," Technical Report ISL-65-2, Information Systems Lab-
oratory, Department of Electrical Engineering, The University of
Michigan, Ann Arbor, April 1965.

Arnold, Richard F., "Random Access Storage Organization and Finite
Automata," presented at the Rome Air Development Center-Hughes
Aircreft Symposium on Logic, Computability and Automata, Rome,

New York, August 1965, end to be published in the Proceedings,

by Spartan Press.

Dauber, Philip S., "An Analysis of Errors in Finite Automata,"
Information and Control, 8 (1965), 295-303.

Dauber, Philip S., "An Aralysis of Errors in Finite Automata,"
Technical Report ISL-65-1, Information Systems Laboratory,
Department of Electrical Engineering, The University of Michigan,
Ann Arbor, April 1965.)

Dauber, Philip S., "Errors in Finite Automata," FPh.D. thesis,

and Technical Report SEL-65-1, Systems Engineering Laboratory,
Department of Electrical Engineering, The University of Michigan,
Ann Arbor, October 1965.

Gonzalez, Rodolfo and Lawler, Eugene L., "Two-level Threshold
Minimizetion," 1965 TEEE Conference on Switching Circuit Theory
and Logical Design, Ann Arbor, October 1965, p. 9L.

Lawler, Eugene L., "An Analysis of Roth's Methods of Synthesis,"
Tth Midwest Symposium on Circuit Theory, Ann Arbor (May 1964).

Lawler, Eugene L., "Combinatorial Aspects of Variable-Length
Encoding," Internetional Conference on Microwaves, Circuit Theory,
and Information Theory, Tokyo, Japan, September 196L4,

Lawler, Eugene L., "On Scheduling Problems with Deferrsal Costs,"
Management Science, 11, 2 (November 196k4), 280-288.

Lawler, Eugene L., "Covering Problems: Duality Relavions and a
New Method of Solution," Technical Report ISL-65-3, Information
Systems Laboratory, Department of Electricel Engineering, The
University of Michigan, Ann Arbor, May 1965.

(a12]

[ar3]

{alk]

67

Reiter, Raymond, "A Study of a Model for Parallel Computation,"
Technical Report ISL-65-4, Information Systems Laboratory,
Department of Electrical Engineering, The University of Michigan,
Ann Arbor, July 1965.

Reiter, Raymond, "A Study of a Model for Parallel Computation 1II,
Timing," to appear as a technical report of the Systems Engineering
Laboratory, Department of Electrical Engineering, The University
of Michigan, Ann Arbor.

Wood, David E. and Lawler, Eugene L., "Branch and Bound Algo-
rithms," Technical Report, The University of Michigan 1965
Engineering Summer Conference on "Recent Mathematical Advances
in Operations Research and the Management Sciences,".

(PRIAT

1 il

{ v1]

[v2)

[»3)

[oh)

[vs)

[vé]

{ v7]

[©v8)

[v9]

(b10]

(b11]

[b12]

(v13]

[b1k]

Other References

Batson, Alan, "The Organization of Symbol Tables,” Communications
of the ACM (February 1965).

Bertier, P. and Roy, B., "Procedure de Resolution pour une Classe
de Problems Pouvant Avoir un Caractere Combinatoire," Cahiers du
Centre D'Etudes de Recherche Operatiomnelle, 6, (1964) 202-208.

Brzozowski, J. A., "On Single-Loop Realizations of Automata,"
IEEE Conference Record on Switching Circuit Theory and Logical
Design, New York (October 1365).

Burks, A. W., Warren, P, W., and Wright, J. B., "An Analysis of a
Logical Machine Using Parenthesis-Free Notation," Math. Tsables
and Other Aids to Computation, 7 (1954), 53-57.

Canaday, R. H., "Two-Dimensional Iterative Logic," Report ESL-R-210,
Electronic Systems Laboratory, Massachusetts Institute of Tech-
nology, September 196k.

Chomsky, N., "Formal Properties of Grammars," in Handbook of
Mathematical Psychology, John Wiley and Sons, Inc., Nevw York,
2 (1963), 323-L18.

Chomsky, N., "On Certain Formal Properties of Grammars," Informa-
tion and Control, 2 (1959), 137-167.

Dentzig, G. B., Fulkerson, D. R., end Johnson, S., "Solution of
a Large-Scale Travelling Salesman Problem," Journal of Operations
Research Society of America, 2 (1954), 393-410.

Davis, M. D., Computability and Unsolvability, McGraw-Hill Bock
Company, New York 319565.

Edmonds, J., "Minimum Partition of a Matroid into Independent
Subsets," J. Research of the NBS, Section B., Mathematics and
Mathematical Physics 9B, 1,2 (Jenuary-june 1965), 67.

Edmonds, 5., "Paths, Trees and Flowers, Canadian J. Math.
(May 1965).

Evey, R. J., "Applicaticns of Pushdown-Store Machines," AFIPS
Conference Proceedings, 24 (1963), 215-228,

Friedman, A. D., "Feedback in Asynchronous Circuits," 12§2 TEEE
Conference Record on Switching Circuit Theory and Logical
Design, New York (October 1365), 94.

Gilvert, E., and Moore, E., "Varisable-Length Binary Encoding,"
Bell Systems Technical Journal, 38, (1959), 933-967.

14 S e 1 1 e ki it

i it datiing mm "

(b15]

[b16]

[b17]

(v18]

(©19]

{v20]

[b21]

[b22]

[b23]

[b24]

(p25]

[v26]

(b27]

[v28]

69

Ginsburg, S., A Survey of ALGOL-Like and Context-Free Language
Theory, System Development Corporation, Report No. TM—?3§50%§700,
March 6, 196k,

Ginsburg, S., and Rice, H. G., "Two Families of Languages Related
to ALGOL," Journal of the ACM, 9 (1962), 350-371.

Ginsburg, S., and Rose, G. F., "Some Recursively Unsolveble Prob-
lems in ALGOL-Like Lenguages," Journal of the ACM, 10 (1963),
29-47. ,

Harrison, M. A., "On the Error Correcting Capacity of Finite
Automata," Informetion and Control, 8 (1965), 430-450.

Hartmanis, J., "Loop-free Structure of Sequential Machines,™
Information and Control, 5, (March 1962), 25-43.

Hartmanis, J. and Stearns, R. E., "A Study of Feedback and Errors
in Sequential Machines," TEEE Trans. on Electr. Computers, EC-12,
(1963) 223-232.

Hartmanis, J., and Stearns, R. E., "Computational Complexity of
Recursive Algorithms," in Proceedings of the Fifth Annual Sympo-
sium on Switching Theory and Logical Design, Princeton, New Jersey
(1964), £2-90.

7
Hartmanis, J. and Stearns, R. E., "Pair Algebra and its Applica-
tion to Automata Theory," Information and Contro.. 7 u.cember,
1964).

Jensen, P. A., "Bibliography on Redundancy Techniques," Redundancy
Techniques in Compufing Systems (edited by R. H. Wilcox end W. C.
Mann), Spartan Books (1962}, 389-403.

Karp, R. M., and Miller, R. E., "Properties of a Model for Parallel
Computations: Determinacy, Termination, Queueing," IBM Research
Paper RC-1285. (To appear in SIAM Journal).

Krohn, K. B. and Rhodes, J. L., "Algebraic Theory of Machines,"
Mathematicel Theory of Automata, Polytechnic Press, Brooklyn,
New York (1963).

Medvedev, Y. T., "On the Class of Events Representable in a Finite
Automaton," Sequentisl Machines: Selected Papers (E. F. Moore,
ed.), Addison-Wesley, Reading Massachusetts Engh).

Minnick, R. C., "Cutpoint Cellular Logic," IEEE Trans. on Electr.
Computers, EC-13, 6 (December 1964), 685-698.

Moore, E. F., and Shannon, C. E., "Reliable Circuits Using Less
Reliable Relays,” Journal of the Franklin Institute, 262 (1956)
191-208, 281-297.

sl

[va9]

[©30]

[b31]

(v32]

(v33]

[b34]

(035]

(v36]

(©37]

70

Motzkin, T., Reiffa, S. H., Thompson, G. L, and Thrall, R. M.,
"The Double Descripticn Method," Contributions to the Theory
of Games, Vol. IT (eds., H. W. Kuhn, A. W. Tucker) Princeton
University Press, Princetor, New Jersey (1957).

Naur, P., et _al., "Revised Report on the Algorithmic Language
ALGOL 60," Journal of the ACM, 9, (1962), 350-371.

Neumann, P. G., "Error Limiting Coding Using Information Loss-
less Machines," IEEE Trans. on Information Theory, IT-10,
(1964), 108-115.

Perles, M., Rabin, M. O., and Shamir, E., "The Theocry of Definite
Automata," IEEE Trans. on Electr. Computers, EC-12, (June 1963),
233-2k2.

Pontryagin, L. S., The Mathematical Theory of Optimal Processes,
Interscience Publishers, New York (1962).

Schutzenberger, M. P., "On Context-Free Languasges and Pushdown
Autometa," Information and Control, 6 (1963), 246-26k,

von Neumann, J., "Probabilistic Logics and the Synthesis of
Reliable Organisms from Unreliable Compokents," Automata
Studies (Ed. by C. E. Shannon and J. McCarthy$, Princetlon
University Press, Princeton, New Jersey (1956), L43-98.

Winograd, S., "Input Error Limiting Automata," Joui'nal of
the ACM, 11, (1964), 338-361.

Zeiger, P., "Loop-free Decomposition of Sequential Machines,"
Ph.D. Thesis, Massachusetts Institute of Technology (1964).

e L.y S g SO I b M PO A

PSRN O T O

T S T

prower - 2

bt kol

S bty o L

o ki

Security Classification

DOCUMENT CON;'“L DATA - RAD

{Seourity claseificatlon of iltle. hdy of ad end indexing o must be entsred when the oversl! report s clasailied)
V. ORIGINATING ACTIVITY (Comporete author) 24 REPORYT BECURITY C LASSIFICATION
Dapartment of Fiacirices Engineert Unclasaified
L] ment © 8c ¢ neerin
The University of M{chggan & & b anour

3. REPORT TITLE

Mathematical Models of Information Systems

4 DESCRIPTIVE NOTES (Typs of report and inclusive dates)

Interin .
5. AUTHOR(S) (Last name. firat name, initiel)
Richard Arnold Richard Kearp
Harvey Garner Eugene L. Lawler
¢ REFORT DATE 76 YOTAL NO. OF PAQKS 7b. NO. OF REFS
April 1966 8L 3
88 CONTRACT OR GRANT NO. 96. ORIGINATOR'S REPOAT NUMB ER(S)
AF30(602)-35u6
& PROJECT NO.
5581
¢. Task No. Y} g;’nll :JIO!T NO(S) (Any othet numbere the! may be seeigned
558109 . .
d. RADC-TR-66-3T

10. AVAILABILITY/LIMITATION NOTICES

This document is subject to special export controls and each transmittal to
foreign governments or foreign nationals may be made only with prior approval of
RADC (EMLI), GAFB, #.Y. 13kL0.

1. SUPPL EMENTAAY NOTES 12. SPONEORING MILITARY ACTIVITY

Rome Air Development Center (EMIID)
Oriffiss Air Force Base, N.Y. 13LhO,

13. ABSTRACT

This report is the first interim report of a three year study and investiga-
tion by the University of Michigan. The primary objective of this effort is the
study and development of mathematical models of information processing systems.
The general area of research includes machine design, automata theory, and the
application of mathematical models to problems in machine design. The areas of
research in this report are divided into these four areas (1) Automata Theory and
Applications, (2) Theory of Algorithms, (3) System Analysis, and (4) Comdinatorics
and Switching Theory.

DD 5. 1473 UNCLASSIFIED

Security Classification

il

Lk

wiadiakituh

]

Security Classification

KEY WORDS

LINK A LINK B LINK C

ROLEK wT ROL R WY AOLR wr

Data Processing Systems
Mathematical Analysis
Computer Logic

INSTRUCTIONS

L. ORIGINATING ACTIVITY: Enter the name and address
of the conteactor, subcontractor, grantee, Department of Des
fense sctivity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over
all secunity clessification of the report, Indicate whether
‘“Restricted Data” is included. Marking is to be in accord-
ance with appropriate security regulations.

26. GROUP: Automastic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Eater
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
1zed.

3. REPORT TITLE: Enter the complete report title in all
coapits] latters. Titles in all canes should be unclassified.
If a meaningful title cannot be selected without claasifice
tion, show title classification in all capitels in parenthesis
immediately following the title,

4. DESCRIPTIVE NOTES: If appropriate, enter the type of

report, e.g., interim, progr2ss, summary, annual, or final.

Give the inclusive dates when a specific reporting period is

covered.

S. AUTHOR(S): Enter the natme(s) of authar(s) as shown on

or in the report. Enter last neme, first name, middle lnitial.

It military, show rank and branch of service. The name of

the principal «2thor iy an absolute minimum requirement.

6. REPORT DATZI. Enter the dste of the report as day,

month, yesr; or month, yesr. 1lf more than one date appears

on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count

should follow normal paginstion procedures, L 8., unter the

number of pagea containing information

75. NUMBER OF REFERENRCES Fater the total number of

teferences cited in the report.

8a. CONTRACT OR GRANT NUMBER: If sppropriate, enter

the spplicable number of the contrect or grant under which

the repont waa written,

8b, 6c, & 8d. PROJECT NUMBER: Enter the appropriste

military department identification, such as project number,
bproject ber, system bers, task ber, otc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-

cial report number by which the document will be identified

and controlled by the originsting activity, Thia number must

be unique 1o this report.

9b. OTHER REPORT NUMBER(S): If the report has been

assigned any other report numbers (either by the originator

or by the sponsor), s lgo enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than those,

imposed by security classification, using stendard statementa
such aw:

(1) “‘Qualified requesters may obtain copies of this
report from DDC.'!

(2) "Foreign t and di ination of this
report by DDC is not authorlzed.”
(3) °*'U. S Government agencies may obtsin copies of

this report directly from DDC. Other qualified DDC
users shall request threugh

(4) "U. 8. military sgencies may obtein copies of this
report directly from DDC, Other qualified users
shall request through

(5) " All distribution of this report is controlled Qual-
ified DDC users nhall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, ind}-
cate this fect and enter the price, if knewn.

11, SUPPLEMENTARY NOTES: Use for additional explanes-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmentsl project office or Isboratory sponsonag (pay-
ing for) the research and development. [nclude address.

13. ABSTRACT: Enter en absteact giving a brief and factuel
y of the d t indicstive of the report, even though
It may slso appesr elsewhere in the body of the technicsl re-
geon. lfhlddluon-l space iz required, a continustion 'sheet shall
sttached.

It is highly desirsble that the abatract of classified reporta
be unclessified. Each paragraph of the sbstract shall end with
an indication of the military security clasuification of the in-

f tion in the h d a2 (T$), ($). (C), or (V).

There is no Umitation on the length of the abstrect. How-
ever, the suggested length is from 150 t5 225 worde.

14. KEY WORDS: Key worda are technically meaningful terms
or short phrases that characterize a report and may be used as
index entrian for cataloging the report. Key words must be
selected so that no security classification ia required. lIdenti-
fiers, such ss equipment mode! designation, trade name, military
project code name, geographic locetion, may be used as key
words but will be followed by an indication of technical con-
text. The asaignment of links, rules, snd welghts is optional.

UNCLASSIFIED

Secutity Classification

C— e

R

NOTICES OF CHANGES IN CLASSIFICATION, DISTRIBUTION AND AVAILABILITY

69-20

15 October 1969

IDENTIFICATION

FORMER STATEMENT

NEW STATEMENT

l AUTHORITY

AD-4E3 28]

University of Michigan
Ann Ardor. Syastems
Engincering lah,
Interinm rept. no, 1,
Rept. no. RADC TH-
€5-731

Apr €10

Coutract A¥ 30(602)-
3946

No Foreipn without
apyroval of Lone
Air Development
Center, Atin: FLLT,
Grirfise AVE, 00, Y.

No limitation

RADC, USAF ltr,
b Jul 69

